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Abstract 

Quantum-mechanical calculations of the modifica- 
tion of the X-ray scattering factor of an atom/ion in 
an electric field are compared with predictions of the 
semi-classical shell model. If the shell parameters are 
fitted to the dipole polarizability of the ion, the shell 
model is a very good representation of the scattering 
factor of the deformed ion, giving support to its use 
in estimating the effect of ionic deformation on X-ray 
diffuse scattering and X-ray Debye-Waller factors. 

1. Introduction 

Born (1942) was the first to consider the effect of 
modification of atomic scattering factors due to defor- 
mation of vibrating atoms and ions. More recently, 
Buyers & Smith (1966), Melvin, Pirie & Smith (1968) 
and Reid (1974a, b) have applied the shell model to 
investigate the effects of ionic deformation on X-ray 
diffuse scattering from alkali halides. In its simplest 
form the shell model, originally developed by Dick 
& Overhauser (1958) to account for dielectric proper- 
ties of alkali halides, separates the ion into a core 
and a shell coupled by a spring and has, with various 
modifications, proved a very useful classical param- 
etrization of inter-ionic force constants. However, its 
ability to describe modifications of atomic scattering 
due to ionic deformation is less clear. Melvin, Pirie 
& Smith (1968) and Reid (1974a, b) plausibly assign 
to the core and the shell quantum-mechanically calcu- 
lated charge distributions characteristic of the inner 
and outer electrons in the ion and, using the core-shell 
displacements calculated from the lattice-dynamical 
shell-model calculations, estimate the resultant 
changes in diffuse X-ray intensity due to the modified 
scattering factors. Robertson & Reid (1979) have 
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made similar applications of the shell model to X-ray 
scattering from Si, while Reid & Pirie (1980) and 
Reid (1983) have used the model to estimate the effect 
of ionic deformation on Debye-Waller factors. 
Although March & Wilkins (1978) have developed a 
method of calculating elastic X-ray scattering from 
solids in terms of non-rigid pseudoatoms, this quan- 
tum-mechanical approach cannot be readily com- 
pared with semi-classical shell-model specifications 
of charge deformation. 

In this paper we attempt an evaluation of the effec- 
tiveness of the simple shell model in specifying charge 
deformation of atoms and ions by comparing quan- 
tum-mechanical calculations of perturbed X-ray 
atomic scattering factors with shell-model predictions 
for isolated atoms or ions in electric fields. § 2 com- 
pares the shell-model theory with the corresponding 
quantum-mechanical theory. § 3 discusses the Kirk- 
wood-Pople-Schofield method of calculating pertur- 
bed wave functions, while § 4 analyses the results of 
the calculations. Finally, § 5 discusses the validation 
of the shell model in simulating dynamical deforma- 
tion of atomic/ionic scattering factors, and potential 
application of such mechanical models to describe 
static modifications of scattering factors in low- 
symmetry environments. 

2. Theory 

The X-ray atomic scattering factor for an unperturbed 
atom with N electrons is given by 

N 
fo = E ~ 0o* exp(ixS.rj)qJodz, (1) 

j=l  

where ffo(r~, r : , . . . ,  r j , . . . ,  rN) is the many-electron 
wave function of the atom, S = s-So is the difference 
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between unit vectors in the direction of the incident 
and scattered beams and X =2~r/A, where A is the 
X-ray wavelength. If 20s is the angle between the 
incident and the scattered beams, we define 

K = (47r/A ) sin 0s (2) 

and, setting S in the Z direction, 
N 

fo = E ~d/*exp(iKrjcosOj)¢odr. (3) 
j = l  

In the presence of an electric field F, the wave 
function is perturbed, but only the component of the 
field in the S direction will modify the scattering 
factor to linear order in the magnitude of the field. 
Following Buckingham (1964), we consider a field F 
in the direction of the scattering vector. Then 

f = fo+ if, F + O(F2), (4) 

where 

i f ~ F = 2 F E ~ b * e x p ( i K g . r j ) ¢ , d r .  (5) 
J 

and F¢~ is the change in the many-electron wave 
function to first order. 

For small-angle scattering, i.e. K small, 

f i F ~ " - K a F ,  (6) 

where a is the dipole polarizability. Quantum 
mechanically the calculation of f~ is therefore a 
natural extension of conventional atomic polarizabil- 
ity calculations. 

We may contrast this with the corresponding shell- 
model formulation of Melvin, Pirie & Smith (1968). 
The charge density in the ion is given by 

p(r)=p~(r)+p~(r) (7) 

i.e. the sum of core and shell charge distributions 
(Fig. 1) and the atomic scattering factor is then 
initially given by 

fo(K) = fc(K) +fs (K). (8) 

With a field F in the Z direction, let us assume a 
displacement of magnitude to of shell with respect to 
the core, giving 

f ( K ) = f c ( K ) + f ~ ( K ) e x p ( - i K t o ) .  (9) 

Expanding to include only terms linear in to (and so 
F)  we have 

f (K)=fo+iF f l ,  (9') 

where 

f~(K)F=-KoJf~(K).  (9") 

Now, f~(0) = Zs, where Zs is the shell charge, and the 
shell model is parametrized so that 

Zsto  = ol F.  

Hence, 

f I ( K ) F =  - KaFf~(K)/Zs (10) 

and for small K 

f lF" -  - K a F  (6') 

as before, i.e. the shell model and the quantum- 
mechanical model give identical results for small scat- 
tering vectors. We now wish to compare the two 
models at finite K with f~(K) in (9") calculated from 
the outer-electron ground-state wave functions of the 
atom or ion, and ¢1 in (5) calculated by the Kirk- 
wood- Pople-Schofield method. 

3. Kirkwood-Pople-Schofield calculation 
of perturbed wave functions 

The Kirkwood-Pople-Schofield approach is a par- 
ticularly simple method of calculating the wave func- 
tions of an atom or ion perturbed by an electric field. 
Its successes are reviewed by Thorhallson, Fisk & 
Fraga (1968) and Fraga, Karlowski & Sazenda (1976). 
The modified state wave function is expressed in the 
form 

~b= ~o[1+~.  U(r j ) ] ,  (11) 
J 

where the rj are with respect to a coordinate system 
with the electric field in the Z direction. U(r) is 
approximated by 

U(r) = F(l~r+ vr 2) cos 0 (12) 

(a) 

I 

I 

S 

I 
I 

I 

(b) ~ F 

J i I 

I 

Fig. 1. Schematic diagram of  the simple shell model of  an ion (a) 
in the absence of a field, (b) in the presence of  an electric field F. 
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and the/z  and u are determined variationally in terms 
of moments of the unperturbed charge distribution. 

Then f~ is given through (5) by 

iAF=2FT. Y.I 0o* exp (iK}. rj) 
i j 

x (/zr~ + vr 2) cos 0~0o dr. (13) 

For the special case of a hydrogenic atom the i ,j  
symbols are suppressed, /z = - 1 / Z ,  v = - 1 / 2 Z ,  and 
the exact solution (Buckingham, 1964) is given in 
atomic units (a.u.) by 

f,=-Ka(I+K2/4Z2)-4(I+K2/12Z2). ( 1 4 )  

For a general N-electron system f~ contains both 
diagonal terms (i = j )  and off-diagonal terms (i C j ) ,  
the latter arising directly from the antisymmetry con- 
straint in 0o. 

For small K (13) reduces to f~ = - ~ K ,  where a is 
the value of the polarizability calculated by the Kirk- 
wood-Pople-Schofie ld  method, and in all the cases 
discussed here the ce value implied by f ,  agrees well 
with those previously calculated more directly by 
Fraga et al. (1976). In all the calculations that follow 
(apart from H where analytic solutions are available) 
f , ( K )  and f~(K) are calculated from the Hartree- 
Fock wave functions of Clementi & Roetti (1974). In 
computing the shell scattering factors it is assumed 
that only the outermost ns and np wave functions 
contribute. 

with a polarizability a fitted to the same value 9/2 
as in the exact representation, and fo as given by 
Buckingham (1964). The exact and shell-model esti- 
mates start off together linear in K, but the shell model 
continues to rise to give a maximum at K = 1 a.u.-t, 
a much higher value than for the exact solution. The 
shell model does not therefore give a good representa- 
tion of f ,  for a hydrogenic atom for K ~> 0.5 a.u. - ' ,  
but of course applying the shell model to a single- 
electron atom is not close to the original spirit of  the 
model, and comparison with quantum-mechanical 
solutions for a many-electron atom is the relevant test. 

( b ) Neon-like atoms/ions 

Fig. 3(a)  compares [f,I vK in a.u. for the quantum- 
mechanical model and the shell model for Ne with 
the shell model assigned the same polarizability as 

(a) 
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4.  R e s u l t s  

(a) Hydrogen 

Fig. 2 compares If, I v K in a.u. for the exact solution 
given in (14), and the shell-model approximation 
assuming the single electron constitutes the shell 
charge. 

9 K  

f t = - K a f ° ( K ) =  - 2 ( 1  + + K2/4) 2 (15) 
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Fig. 2. Graph of If~l(the magnitude ofthe modified X-ray scattering 
factor per unit applied field) vs scattering vector K in a.u. -t for 
the hydrogen atom. In atomic units the unit of field is 51.4 V ~-~ ; 
the unit of scattering vector is 1.89/~-I. 
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Fig. 3. Comparison of Iftl (the magnitude of modified X-ray scat- 
tering factor per unit applied field) versus scattering vector K 
in a.u.- 1 for the shell model and the quantum-mechanical model 
of Kirkwood, Pople & Schofield. (a) Ne; (b) Ar; (c) Kr. 
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that given by the Kirkwood-Pople-Schofield calcula- 
tion. For both calculations the wave functions of 
Clementi & Roetti (1974) are used. The correspon- 
dence between the two curves is astonishingly good 
throughout the full relevant range of K. The level of 
agreement is very similar for Mg 2+, Na ÷ and F-. 

(c) Argon-like atoms/ions 

Fig. 3(b) makes a similar comparison for At, where 
the agreement is still very good; Ca 2÷, K ÷ and C1- 
behave very similarly. 

( d) Krypton-like atoms/ions 

Fig. 3(c) shows that, although the position of the 
maximum in If, I is well reproduced in Kr, there are 
moderate discrepancies between the models at large 
K;  Sr 2÷, Rb ÷ and Br- show similar trends. 

It might be expected that the position of the 
maximum in [fll would decrease with increasing 
atom/ion size. Fig. 4 shows a graph of the quantum- 
mechanical results for [f t /a I versus K for a range of 
atoms and ions. Because of the universal scaling of 
f~ with a at low K, all these curves begin with unit 
gradient. KMAX varies as R -v, where R is the 
atomic/ionic radius, and 3' varies from 3,-2"8 
(neutral atoms), to 3 ' -  1.6 (negative ions), while the 
maximum value off~ varies as oR-V', where the values 
of 3'~ are similar (although slightly smaller) than the 
3' values above. Be careful not to be misled by Fig. 
4; Na ÷ has a very low polarizability, and so its 
maximum deformed scattering factor is less than for 
many other ions (Table 1). Of course the values of a 
are in themselves R dependent, so that (f~)MAX varies 
approximately as  of 3/4. It is important to put the 
magnitude of the effect into some perspective-a singly 
charged ion 2-5,~ from the atom/ion concerned 
would produce maximum deformationf~ values vary- 
ing from 0.03 (Na ÷) to 0.7 (Br-). It is also relevant 
to compare f~ with the unperturbed scattering factor 

1.2 

1-0 

f~08. 

0.6 

0-4 

0.2 

0 

Nil* 

1 2 3 4 
K au -~ 

Fig. 4 Compar i son  of  quantum-mechanica l ly  calculated curves of  
[ f l / a  I vs scattering vector K in a.u. -1 for a wide range of  
closed-shell systems. Note the universal unit initial gradient and 
the shift in the position of  the maximum with atomic size. 

Table 1. Values of the maximum magnitude of the 
deformation in atomic scattering factor per unit field, 

IfllMax and Ifl/folMax, for various atoms and ions 

Field unit 51.4 V ~ -  1 

A t o m / i o n  [fIlm,x Ifl/f0lmax 
Na ÷ 0"8 0"I0 
Ne 1.6 0-19 
F -  4.6 0-51 
K ÷ 3.5 0-23 
Ar 5-9 0.38 

C I -  ! 3.0 0-79 
Rb ÷ 5-5 0" 17 
Kr 8.7 0.26 
Br- 17.3 0.51 

f0. The maximum values of f~/fo are given in Table 
1 : large atomic number is less important, but negative 
ions are still favoured over neutrals or positive ions. 

It is well known that the polarizability of some ions 
in crystals varies with crystalline environment-see  
for example Maessen & Schmidt (1981). In Fig. 5 we 
have a similar effect in the comparison of the modifi- 
cation of the X-ray scattering factor for an 02- ion 
subjected to an external field F in addition to stabiliz- 
ing potential wells of various depths [Vo=0.5, 1.0, 
1.5, 2-0 atomic units (1 atomic unit = 27.2 eV)]; here 
the wave functions of Harker (1974) have been used. 
The different initial gradients reflect polarizability 
differences, and the positions of the maximum of the 
curves reflect different effective ionic radii in the 
various potentials. 

5.  D i s c u s s i o n  

The primary objective of this paper is to evaluate the 
effectiveness of the semi-classical shell model in 
describing modifications of X-ray scattering factors. 
This has been done by comparing results for the 
idealized situation of an isolated atom or ion in an 
external electric field. The correspondence between 
quantum-mechanical calculations and the shell model 
is remarkable, particularly for Ne-like and Ar-like 
systems. Only for the rather artificial application to 

Vo=0-5 au 

0 2 

0.2 0.4 0.6 0.8 1.0 1-2 1.4 1.6 1;8- ,~,  
K au -~ 

Fig. 5. Compar i son  of  ]f~[ with scattering vector K in a.u. -~ for 
02- ion in stabilizing potential  wells of  various depths,  calculated 
from the wave functions of  Harker (1974). 
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H is there any large discrepancy, although Kr-like 
ions show some deviations at large scattering vector. 
It appears that the modification of the atomic scatter- 
ing factor is not a very sensitive function of the details 
of the modified charge distribution. It is crucial to 
use the correct polarizability a, because both the 
initial gradient and the maximum value of [fll scale 
with a. This is, of course, the very empirical quantity 
to which the shell model is fitted. Thereafter, the 
maximum value of Ifll, and the decrease towards zero, 
is controlled to lowest-order approximation by 
atom/ion size. Describing the shell charge distribu- 
tion crudely by displacement of the outer electron 
charge distributions of the undeformed ion appears 
to be adequate, and good correspondence with quan- 
tum-mechanical model results. It is interesting that 
the modification of the atomic scattering factor does 
not depend on the value assumed for the shell charge, 
another factor that gives some confidence in the 
approach. These results may also be interpreted in a 
negative way; if one somehow inverts scattering 
intensities from deformed ions to predict deformed 
charge distributions, it is likely that the resultant 
predictions will have the correct electric moment, but 
there is little information in these scattering intensities 
to get the detailed charge deformation right. 

If f ( K )  were calculated from (9) instead of (9') 
there would be additional contributions of order of 
F 2 and higher in the shell-model calculations. In this 
way the shell-model approach takes account of 
higher-order polarizability effects, not considered in 
this quantum-mechanical model, but these contribu- 
tions will be small. The KPS method takes account 
of charge deformation of all electrons in the atom or 
ion, but by far the largest response is from the outer 
s and p electrons, that have been assigned to the shell. 

When ions vibrate in solids, their deformation is 
controlled by the local electric field (the effect that 
has been directly tested in this paper) and by overlap 
forces. Although the latter effect has not been 
examined here the insight we have gained on the way 
modified X-ray scattering factors depend on empirical 
quantities such as a and R would suggest that the 
shell model will give a good first-order description 
of deformation of scattering factors in such more 
complicated environments. We have only tested 
closed-shell systems directly; the application of these 
methods to systems such as Si may not be quite so 
easily justified, but the emprical fitting of the shell 
model is likely to build in the correct general deforma- 
tion characteristics. More sophisticated forms of the 
shell model, e.g. the breathing shell model, will still 
have these basic strengths, and in addition will incor- 
porate some further effects beyond the dipole 
approximation, which are certainly not negligible. 
Non-dipole contributions to atomic scattering factors 
in H have been previously considered by Matthew & 
Gravano (1979). 

This suggests that the substantial body of work on 
deformation coupling on X-ray scattering factors and 
Debye-Waller factors by Melvin, Pirie & Smith 
(1968), Reid (1974a, b), Robertson & Reid (1979) 
and Reid & Pirie (1980) is well founded quantum 
mechanically. It gives support to their conclusion that 
the 'vibration' of the outer-electron charge distribu- 
tions is much smaller than for the core electrons, and 
that this may lead to effective Debye-Waller factors 
B deviating by a few per cent from those of the ion 
cores for low-order reflections. 

Much work has also been carried out in the study 
of the static modification of atomic scattering factors 
in molecules and crystalline environments; this has 
generally been quantum-mechanically based, but it 
would be attractive also to have mechanical models 
of the type discussed here to describe such changes 
in fo in terms of empirical parameters (nearest-neigh- 
bour distance, ionicity, polarizabilities etc.). In the 
work presented here it is important to note that the 
dynamical deformations scale with the in situ 
polarizability, i.e. contraction or expansion of the 
atomic/ionic wave functions in crystalline environ- 
ments leads to a change in deformation properties as 
discussed here in the case of 0 2- . The question is 
'Can this initial static change in charge distribution 
itself be modelled mechanically?' The difficulty is that 
such effects usually depend on higher-order 
polarizabilities, which are less well known empirically 
or theoretically. The breathing shell model (Schroder, 
1966) does allow for radial deformation of ions during 
vibration relative to the initial static-charge distribu- 
tion of the ion in the crystal. It will be of interest to 
consider further ways of parametrizing such models 
to describe further variations in shell-charge distribu- 
tions with crystalline potential, and this will be 
attempted in later work. 

The correspondence between quantum mechanics 
and the shell model of the idealized perturbation 
considered in this work gives confidence in the ability 
of the shell model to give a good first-order descrip- 
tion of charge-deformation X-ray scattering effects 
that occur when ions vibrate in crystalline environ- 
ments. 

John Reid and John Pirie of the University of 
Aberdeen are acknowledged for stimulating dis- 
cussions, and thanks are due to Professor Fraga for 
providing data on the modified wave functions for 
checking purposes. One of us (SY) wishes to thank 
the University of Basrah, Iraq, for financial support. 
We would also like to thank one of our referees for 
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Abstract 

Tables 13 and 17 of the paper by Tanaka, Sekii & Nagasawa 
[Acta Cryst. (1983), A39, 825-837] are not perfect. The 
correct tables are given. 

The following corrections should be made to the paper by 
Tanaka, Sekii & Nagasawa (1983). 

1. Table 13 should be replaced by Table 13 given here, 
since the case of general [hk0] incidence does not cover 
the special [110] incidence case. 

2. Table 17 should be replaced by Table 17 given here. As 
a result, the numbers of distinguishable space groups should 
read 185 instead of 191 in the second sentence of the 
Abstract and in the first sentence of the second paragraph 
on p. 833. In the same paragraph, 16 pairs should read 19 
pairs. 

Table 17. Space groups indistinguishable by GM lines 

[P3, (P31, P32)] (P422, P4222) 
[P312, (P3112, P3212)] (P4212, P42212) 
[P32 l, ( P312 l, P3221 )] (P432, P4232) 
[P6, (P62, P64)] (I4, 14 0 
[P622, (P6222, P6422)] (1422, I4,22) 
[P63, (P6~, P65) ] (1432, I4~32) 
[P6322, (P6122, P6522)] (F432, F4,32) 
(P4, P42) (123, I2~3) 
( P4/m,  P42/ra) (I222, I212121) 
( P4/n, P42/n) 

Reference 

Table 13. 

Space group 

195 P23 
196 F23 
197 I23 

198 P2,3 

199 I213 
Pm3 

200 
P2/m3 

G M  lines for point groups 23 and m3 

001 
213 
OkO 

2t:, 

001 

Pn3 n 2 
201 

P2/n3 OkO 

tl 3 
Fm3 

202 
F2/m3 

001 
Fd3 

203 
F2/d3 OkO A 3 

Incident beam direction 
[1001 [110] [hk0] 

(cyclic) (cyclic) (cycle) 

tin3 
2O4 

I2/m3 

A 2 B 2 001 A 2 B 2 OOI A 2 B 2 

B3 213 B3 21 B 3 

TANAKA, M., SEKII, H. & NAGASAWA, T. (1983). Acta Cryst. 2o6 ta3 
A39, 825-837. I21/a3 

~'h0 A 2 B 2 
A 3 n A s 

~o 
h + k = A 2 B 2 

4n +2 A 3 
d 

001 A 2 B 2 001 A 2 B 2 001 

Pa3 a2, 2t3 A 3 B 3 213 B 3 2 l 
205 

P2J a3 OkO hhO A 2 B 2 F.hO 

2;2 B 3 a 3 A 3 a 
/~h0 A 2 B 2 ~.hO 

a s A s a 

A 2 B 2 
B3 

A2 B2 
A3 
A2 B2 
A3 
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